

Investigation of the Hull-Superstructure Interaction in order to Predict the Contribution of Superstructures to Hull Girder Strength

EMSHIP Master Thesis Presentation Jiawei Zou Supervisor: Professor Maciej Taczala at ZUT Ing. Wa Nzengu Nzengu at Bureau Veritas DNI

Outline

- Introduction
- Hull and Superstructure Interaction Problem
- Ship Structure and Rule Based Analysis
- Strength Analysis by Using Finite Element Analysis Software
- Analysis and Results
- Concolusion and Recommendation

Introduction

- Passenger ships have strong hull and superstructure interaction
- The main hull and superstructure contribute fully to the longitudnal strength
- Larege openings in the side shell and decks, the load transfer from the recession of the side shell make the structural behavior complex

Design and Rule Requirement Conflicts

Design Requirements for Large Openings

Structural Safety with Large Openings

Objective

Predict the structural behavior of superstructure in FEA and compare the rule based analysis results

Studied Ship

- Omar El Khayam
- Operated on Lake Nasser in Egypt
- One of Largest Inland Cruise Ships BV has classed

General Description of the Ship

Identification	Тор	Classification		Top
Register Number:	09827J	Main Class Symbols:	13/3 E	
Ship Name:	OMAR EL KHAYAM	Service Notations:	Passenger vessel	
Type & service:	Passenger vessel	Navigation Notations:	NII	
Owner:	TRAVCO NILE CRUISES	Machinery	MACH	
Connecting District:	ALEXANDRIA (ALX)	Faulaciantery.	100 22 021	
Flag:	EGYPT	Equipment:	1(Ch 32 Q2)	
Port of Registry:	CAIRO	Dimension		Ten
		Dimension		100
Machinery	Top	Gross Tonnage 69:	2096 (Estimated)	
Propelling Type:	Diesel	Overall Length:	112 m	
Licence:	CATERPILLAR	LPP:	98 m	
Date of Ruild	01.100.2005	Breadth:	16.2 m	
Ruilder	CATERPILLAR Inc	Depth:	4.4 m	
Place of Ruild (country):	Maccuilla (Illinnic) (IISA)	Draught:	2.2 m	
Prace of Dalio (country).	Mossviis (iiinois) (COA)	Conservation and Construction		
Total Dawar /kl//	1710 MM	Hull & Caroo		Top
Total Power (KW):	1710 KW	Thun & Gargo		100
Iotal Power (HP):	2020 HP	Builder:	Port Said Engineering Works	
Propelling machinery		Place of build (Country):	Port Said (EGY)	
Internal Combustion Engine:	(3) 4T - 12 cyl - 13.72 cm x 15.24 cm at 2100 rpm	Date of Build:	01 Dec 2008	
Electrical installation		Hull Material:	Steel	
Frequency:	50 Hz	Number of Cont. Decks:		
Propellers and propellers	hafts		Machinery Aft	
Propelling system:	2 Screw Propeller Solid Ord 10.00	Tanks		
a stand a stand	1 Screw Propeller Solid Ord 10.00 at 719 rpm	LBC:	6985	

General Description of the Ship

Observation deck

Main deck

Hull and Superstructure Interaction Problem
Hull Superstructure Bending Stress Distribution

Hull and Superstructure Interaction Problem

 Case A: Superstructure is long enough Stress in linear form
 Case B: Superstructure is short Significant vairance in hull and deckhouse
 Case C: Intermediate case

When the superstructure is 15%-20% length of main hull, it can be regarded as a relatively long superstructure

Hull and Superstructure Interaction Problem

Bending Efficiency

A parameter indicating the contribution degree of an erection to the hull girder strength

Hull Girder Strength
 Based on simple beam
 theory

$$\sigma_1 = \frac{M_{TH}}{Z} 10^3$$

 Factors Affecting Bending Efficiency

Ship geometry, Connections, Hull section modulus, Materials and Opening Size

Net Scantling
 Gross thickness deduct the Corrosion thickness

Hull and Superstructure Interaction Problem Bending Efficiency

 $v_i = v_{i-1} (0.37 \chi - 0.034 \chi^2)$

		Α	1	е	A _{SH}	Ω	j	λ	X	V
		[cm ²]	[cm ⁴]	[cm]	[cm ²]	[cm ⁻⁴]	[cm ⁻¹]	[m]	[-]	[-]
Deck 3	1	7630.7	2.00E+08	235.2	403.3	1.97E-08	6.87E-04	26.875	1.85	<mark>56.69%</mark>
	е	1846.5	2.64E+06	340.9	73.5					
Deck 4	1	8528.8	5.29E+08	416	476.8	2.24E-08	7.52E-04	47.65	3.58	<mark>50.41%</mark>
	е	1721.7	2.35E+06	259.5	76					
Deck 5	1	10250.5	1.19E+09	572.6	552.8	1.82E-08	6.45E-04	45.5	2.94	<mark>39.98%</mark>
	е	1695.1	2.07E+06	260.6	66.5					
Deck 6	1	11945.6	2.20E+09	724.3	619.3	1.89E-08	5.66E-04	42.45	2.4	<mark>27.71%</mark>
	е	1265.8	1.47E+06	260.7	47.5					

Ship Structure Details

- Longitudinaly framed (mainly)
- Fore and aft part transversely framed
- Double bottom Structure
- Swimming Pool and Jacuzzi
- Large balcony

Material: Grade A normal strength steel

Rule Based Analysis

- Five frame locations are modeled in MARS INLAND
- Stress distribution is checked without bending efficiency
- Stress distribution is calculated considering bending efficiency after
- Frame locations: 32m, 37m, 46m, 50m and 73m

Rule Based Analysis

Structural item	Z, [m]	Simple beam theory	NR 217				
		T		G			
		O _{x1}		0 _{x2}			
Bottom	0	-32.37	100	-30.04			
Inner Bottom	1.6	-24.14	100	-22.55			
Main Deck	4.4	-9.76	100	-9.06			
Deck 3	7.2	4.63	56.69	2.44			
Deck 4	9.9	18.50	50.41	8.66			
Deck 5	12.6	32.38	39.98	12.01			
Deck 6	15.3	46.25	27.71	11.89			

- Software: FEMAP
- Elements:
 - Plate/Shell Elements for Plates and Stiffeners
 - Rigid element for the application of loads

 Structural details are included except some brackets which do not participate in the hull girder bending

Strength Analysis by Using Finite Element Analysis Software Rigid Element

Strength Analysis by Using Finite Element Analysis Software Boundary Condition

- According to BV Inland Rules, the calculation should be based on hull girder bending moment induced by still water bending and wave bending moments
- Sagging condition should not be considered

Still water hogging bending moment

$$M_{H0} = 0.273L^2B^{1.342}D^{0.172}(1.265 - C_B) = 126317$$
kN.m

Still water sagging bending moment

 $M_{s0} = 0$

For range of navigation $IN(1.2 \le x \le 2)$, the absolute value of the waveinduced bending moment amidships is to be obtained as follows:

$$M_W = 0.021 n C L^2 B (C_B + 0.7) = 43692 \text{kN.m}$$

The total bending moment for calculation is thus 170009kN.m or 1.7×10^{11} N.mm under hogging condition. The sagging condition is not considered.

Strength Analysis by Using Finite Element Analysis Software Model Simplification

Analysis and Results Deck 3 Level Stress

Analysis and Results Deck 4 Level Stress

Analysis and Results Deck 5 Level Stress

Analysis and Results Deck 6 Level Stress

Analysis and Results Details for Analysis

								20.26
								20.02
								19.78
								19.54
								18.58
		_						
Ă.								
7								

Analysis and Results X=32m Results Comparison

Structural item	Z, [m]	Simple beam theory		NR 217	F.E.A
		σ _{x1}	□□∨[%]□□	σ _{x2}	σ_{x3}
Bottom	0	-32.37	100	-30.04	-95.27
Inner Bottom	1.6	-24.14	100	-22.55	-38.9
Main Deck	4.4	-9.76	100	-9.06	-7.44
Deck 3	7.2	4.63	56.69	2.44	8.97
Deck 4	9.9	18.50	50.41	8.66	3.77
Deck 5	12.6	32.38	39.98	12.01	8.72
Deck 6	15.3	46.25	27.71	11.89	16.68

Analysis and Results X=32m Results Comparison

Analysis and Results X=37m Results Comparison

Structural item	Z, [m]	Simple beam theory	NR 217	F.E.A	
		σ _{x1}	□□∨[%]□□	σ_{x2}	σ_{x3}
Bottom	0	-32.37	100	-30.04	-67.37
Inner	1.6	-24.14	100	-22.55	-54.15
Bottom					
Main Deck	4.4	-9.76	100	-9.06	63.61
Deck 3	7.2	4.63	56.69	2.44	6.22
Deck 4	9.9	18.50	50.41	8.66	3.76
Deck 5	12.6	32.38	39.98	12.01	12.9
Deck 6	15.3	46.25	27.71	11.89	22.58

Analysis and Results X=37m Results Comparison

Analysis and Results X=46m Results Comparison

Structural item	Z, [m]	Simple beam theory	NR 217	F.E.A	
		σ _{x1}	□□∨[%]□□	σ _{x2}	σ _{x3}
Bottom	0	-32.37	100	-30.04	-62.80
Inner	1.6	-24.14	100	-22.55	-40.71
Bottom					
Main	4.4	-9.76	100	-9.06	45.85
Deck					
Deck 3	7.2	4.63	56.69	2.44	1.73
Deck 4	9.9	18.50	50.41	8.66	3.53
Deck 5	12.6	32.38	39.98	12.01	16.66
Deck 6	15.3	46.25	27.71	11.89	27.06

Analysis and Results X=46m Results Comparison

Analysis and Results X=50m Results Comparison

Structural item	Z, [m]	Simple beam theory	NR 217		F.E.A
		σ _{x1}	□□∨[%]□□	σ _{x2}	σ _{x3}
Bottom	0	-32.37	100	-30.04	-55.18
Inner Bottom	1.6	-24.14	100	-22.55	-37.96
Main Deck	4.4	-9.76	100	-9.06	39.46
Deck 3	7.2	4.63	56.69	2.44	1.68
Deck 4	9.9	18.50	50.41	8.66	3.77
Deck 5	12.6	32.38	39.98	12.01	17.44
Deck 6	15.3	46.25	27.71	11.89	29.25

Analysis and Results X=50m Results Comparison

Analysis and Results X=73m Results Comparison

Structural item	Z, [m]	Simple beam theory	NR 217	F.E.A	
		σ _{x1}	□□∨[%]□□	σ _{x2}	σ _{x3}
Bottom	0	-32.37	100	-30.04	-88.40
Inner Bottom	1.6	-24.14	100	-22.55	-44.69
Main Deck	4.4	-9.76	100	-9.06	-5.24
Deck 3	7.2	4.63	56.69	2.44	2.26
Deck 4	9.9	18.50	50.41	8.66	1.74
Deck 5	12.6	32.38	39.98	12.01	19.73
Deck 6	15.3	46.25	27.71	11.89	6.31

Analysis and Results X=73m Results Comparison

Conclusion

- Stress level of top decks and bottom and inner bottom in FEA is generally higher than rule predicted values
- Longitudinal bulkheads are contributing to the hull girder strength and may cause local strength vairation, such as compression to tension, in the vicinal area
- Local structures will affect the hull girder normal stress
- Bending efficiency is generally increased at deck 6 and 5 about 30% whereas bending efficiency is reduced at deck 3 and 4 level about 30%

Bending Efficiency Change

	32	m	37m		46m		50	m	73m	
Bending Efficiency	RULE	FEA	RULE	FEA	RULE	FEA	RULE	FEA	RULE	FEA
deck3	56.69%	193.74%	56.69%	134.34%	56.69%	37.37%	56.69%	36.29%	56.69%	48.81%
deck4	50.41%	20.38%	50.41%	20.32%	50.41%	19.08%	50.41%	20.38%	50.41%	9.41%
deck5	39.98%	26.93%	39.98%	39.84%	39.98%	51.45%	39.98%	53.86%	39.98%	60.93%
deck6	27.71%	36.06%	27.71%	48.82%	27.71%	58.51%	27.71%	63.24%	27.71%	13.64%

Normal Stress Changes

Future Work

- Studies about the whole ship model
- Study the influence of side openings sizes on the strength of the ship
- Study deck by deck to see detail results compared with rules

Thank you for your attention